
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Performance and portability of abstract algebra 
operations in C++, Python, and Julia
Jess Woods, Ada Sedova, Oscar Hernandez 
Post-Bachelors Intern

Computer Science Research Group
Computer Science and Mathematics Division

Oak Ridge, Tennessee
August 26, 2020



What is the best way to program a supercomputer?



Node Hardware

V100
16 GB

V100
16 GB

V100
16 GB

V100
16 GB

V100
16 GB

V100
16 GB

P9
22 cores

P9
22 cores

DRAM
256 
GB

DRAM
256 
GB

NV
M

D
R
A
M
2
5
6 
G
B

NIC



Our Use Case

Library for abstract algebra operations (e.g. matrix multiplication, 
addition) on very big integers (up to 2^10000)

Big Integer Applications

• Cosmology
• Hash tables
• Random numbers/probability 

simulations
• Exact precision

Type of Work

•Partitioning arrays of big 
integers

•Data parallel work
•Reducing lists in 
uncommon ways



Our Implementations



Performance









Portability



Portability

Python

C++• Simple/drop-in 
changes for GPUs



Portability Challenges

• POWER9 processors

• Unique supercomputer security, architecture

• Julia building and distribution issues

• Dask setup and troubleshooting issues

Julia Build



Programmability



Programmability

Python

• Everyone inside/outside 
CS already knows it

• High-productivity

• Requires outside libraries 
(Dask, sympy, gmpy2)

• Dask requires 
experimentation

C++

• Compiles to efficient C

• Requires CS knowledge 

• Time consuming fine-
tuning

• Race conditions and big 
number stack size issues

Julia

• New, unknown 

• High-productivity

• Python like syntax

• Built-in constructs for 
parallelism, distribution, 
big number handling, 
and more!



Programmability Challenges

• Holding and processing big integers

• Outside libraries vs native structures

• How to schedule “tasks”
. . .

Inefficient Dask
Task Graph



Efficient Dask Task Graph



Code Comparison C++

Julia

Python



Useful and Fun Julia Constructs

• Dynamic, high-level syntax

• JIT compilation
• Optional typing, type inference
• Simple core, easy to learn, free and open-source

• Function closures 
• C and Fortran calling

• Metaprogramming
• Array broadcasting
• Built-in parallelism, distributed computing



19

Julia Example



Summary

Python C++ Julia
Performance Overhead causes ~10x 

slow down
Excellent Comparable to C++

Scalability Good, Variable on 
different operations

Excellent, Requires 
fine-tuning

Excellent, 
Unpredictable 

garbage collector
Portability One-line scheduler 

conversion
One-line, Requires 
MPI for distribution

Simple, Distributed 
memory requires code 

changes
Runs on Summit Mostly Yes Yes, with comprises

Programmability Excellent More complicated 
for non-CS people

Straightforward, but 
new



Conclusion

• First parallel and fastest implementation

• First to incorporate both theoretical improvements

• Implementations available on github.com/jkwoods

• Python is workable

• C++ is classic

• Julia is very cool and overlooked

https://github.com/jkwoods

